

2.5. Evaluation Process and Reforms Metric

(2.5.2)

No. Key Indicator- 2.5. Evaluation Process and Reforms Metric

2.5.2.

QlM

Mechanism to deal with internal examination related grievances is transparent, time-

bound and efficient

 Every grievance at Institution level is

addressed instantly by the concerned

authorities. Students express their grievances

related to the internal assessment examination

process to the HoD or during the class committee

which is convened at regular intervals. The

HoD/Principal takes appropriate actions to solve

the grievances of the students as early as

possible.

 Internal assessment question paper is checked

by the concerned faculty on the day of

examination and if any discrepancies are found,

they are rectified and communicated to the

students immediately. During internal

examinations, visits to examination halls are

made by the examination cell coordinator and by

internal squad members to monitor the students

during the examinations.

 The end semester examinations are conducted

according to the rules and regulations of the

Anna University. The grievances if any, related

to the end semester examinations are reported by

the Principal to the controller of examinations

of the Anna University. The grievances of the

students related to the evaluation in the end

semester examination are addressed by applying

for revaluation. If the student is not satisfied

with the revaluation results published by the

Anna University, he/she can apply for

review/challenge evaluation by paying the

prescribed fees.

SNO CONTENT PAGE NO

1
CIRCULAR FROM UNIVERSITY REGARDING MID

EXAMINATIONS
1

2
MID EXAMINATION CIRCULAR FROM UNIVERSITY (UG &

PG)
2

3 MID EXAMINATION NOTIFICATIONS PG 3

4 MID PAPER SCHEME OF EVALUTION (ANS KEY) 4

5 REVALUTION PROCESS FOR A FAILED STUDENT 12

6
CHALLENGE REVALUTION PROCESS FOR A FAILED

STUDENT
13

7
FINAL MID MARKS FROM UNIVERSITY CIRCULATED AND

PUT IN NOTICE BOARD
14

CIRCULAR FROM UNIVERSITY REGARDING I MID EXAMINATIONS FOR II B. TECH/MBA

ONLINE EXAMINATION TIME TABLE AND DESCRIPTIVE TIME TABLE WITH SUBJECTS AND CODES

 DEPARTMENT OF CSE

MID EXAMINATION –II

Course Name &

Code:

Programming for Problem solving using C

& R201110
Faculty

Name:

TPVV

SRINIVASARAO

Year/ Semester: I/I Section: CSE-A

Date & Duration: 2ND FEB 2023 & 90 MIN Max Marks: 15M

Answer all the following questions (Each question carries equal marks):

1. what is self-referential structure explain with example? CO6 5M

 L2

2. Explain memory allocation functions with examples? CO4 5M

 L4

3. What is function? Explain how arguments are passed? CO5 5M

 L3

-- ALL THE BEST ---

DEPARTMENT OF CSE

MID EXAMINATION –II

SCHEME OF EVALUTION FOR MID PAPER

Course Name &

Code:

Programming for Problem solving using C

& R201110
Faculty

Name:

TPVV

SRINIVASARAO

Year/ Semester: I/I Section: CSE-A

Date & Duration: 2ND FEB 2023 & 90 MIN Max Marks: 15M

1.ANS KEY:

A self-referential structure is a structure that contains a pointer to a variable of

the same type. This allows the structure to refer to itself, creating a linked data

structure. Self-referential structures are a powerful tool for creating complex

data structures in C++ and are commonly used in algorithms such as trees,

graphs, and linked lists.

or example, consider the following code:

struct Node {

 int data;

 Node* next;

};

EX:

#include <stdio.h>

#include <stdlib.h>

struct node {

 int data;

 struct node *next;

};

int main() {

 // Create three nodes

 struct node *head = NULL;

 struct node *second = NULL;

 struct node *third = NULL;

 head = (struct node*)malloc(sizeof(struct node));

 second = (struct node*)malloc(sizeof(struct node));

 third = (struct node*)malloc(sizeof(struct node));

 // Assign data to each node

 head->data = 1;

 second->data = 2;

 third->data = 3;

 // Link the nodes together

 head->next = second;

 second->next = third;

 third->next = NULL;

 // Traverse the linked list and display its contents

 struct node *current = head;

 while (current != NULL) {

 printf("%d ", current->data);

 current = current->next;

 }

 return 0;

}

DEFINITION:1,EXAMPLE:4M

2.ANS KEY:

Dynamic Memory Allocation in C is a process in which we allocate or deallocate

a block of memory during the run-time of a program.

There are four functions malloc(), calloc(), realloc() and free() present in

<stdlib.h> header file that are used for Dynamic Memory Allocation in our

system. It can also be referred to as a procedure to use Heap Memory in which

we can vary the size of a variable or Data Structure (such as an Array) during the

lifetime of a program using the library functions.

Dynamic Memory Allocation is considered as a very important concept in the

field of Data Structures and is used in almost every Data Structures like Linked

Lists, Stacks, Dynamic Arrays, Queue, etc.

Now, Let us see the definition, syntax and some examples of each library

functions below.

C malloc() Method

malloc() is a method in C which is used to allocate a memory block in the heap

section of the memory of some specified size (in bytes) during the run-time of a

C program. It is a library function present in the <stdlib.h> header file.

Syntax of malloc()

General Syntax:

(cast-data-type *)malloc(size-in-bytes);

C calloc() Method

calloc() is a method in C which is also used to allocate memory blocks in the heap

section, but it is generally used to allocate a sequence of memory blocks

(contiguous memory) like an array of elements. It is also present in <stdlib.h>

header file.

Syntax of calloc()

General Syntax:

(cast-data-type *)calloc(num, size-in-bytes);

C free() Method

free() as the name suggests is used to free or deallocate a memory block

previously allocated using malloc() and calloc() functions during run-time of our

program.

Syntax of free()

General syntax:

free(pointer);

C realloc() Method

realloc() is also a method in C that is generally used to reallocate a memory

block, here re-allocate means to increase or decrease the size of a memory block

previously allocated using malloc() or calloc() methods. It can also be used to

completely allocate or deallocate a memory block on its own, we will see how

to do it in the examples below.

Syntax of realloc()

General syntax : (cast-data-type *)realloc(ptr, new-size-in-bytes)

EXPLORING ALLOCATION TYPES:2M,SYNTAX FOR EACH :3M

3.ANS KEY:

A function is a block of statements that can perform a particular task. As we all

know, there is always at least one function in C, and that is main().

Example

In the example below, the function’s name is sum and the data type is int. This

task of this function is to produce the sum of two numbers:

int sum(int a,int b)

{

 return(a+b);

}

Below, the function is declared in main():

void main()

{

 int sum(int,int); //function declaration

 int x=5,y=6;

 total = sum(x,y);

}

Formal parameters and actual parameters

When we call a function in main() or anywhere else in the program, and the

function we created needs parameters, we would pass parameters to it while

calling the function. In the example above, we passed variables x and y to obtain

the sum of x and y.

Function categories

There are 4 types of functions:

1. Functions with arguments and return values

This function has arguments and returns a value:

#include <stdio.h>

void main()

{

 int sub(int,int); //function with return value and arguments

 int x=10,y=7;

 int res = sub(x,y);

 printf("x-y = %d",res);

}

int sub(int a,int b) //function with return value and arguments

{

 return(a-b); // return value

}

2. Functions with arguments and without return values

This function has arguments, but it does not return a value:

#include <stdio.h>

int main()

{

 void sum(float,float); //function with arguments and no return value

 float x=10.56,y=7.22;

 sum(x,y);

}

void sum(float a,float b) //function with arguments and no return value

{

 float z = a+b;

 printf("x + y = %f",z);

}

3. Functions without arguments and with return values

This function has no arguments, but it has a return value:

#include<stdio.h>

int main()

{

 int sum();

 int c = sum();

 printf("Sum = %d",c);

}

int sum() //function with no arguments and return data type

{

 int x=10,y=20,z=5;

 printf("x = %d ; y = %d ; z = %d \n",x,y,z);

 int sum = x+y+z;

 return(sum);

}

4. Functions without arguments and without return values

This function has no arguments and no return value:

#include<stdio.h>

int main()

{

 void sum();

 sum();

}

void sum() //function with no arguments and return data type

{

 int x=15,y=35,z=5;

 printf("x = %d ; y = %d ; z = %d \n",x,y,z);

 int sum = x+y+z;

 printf("Sum = %d",sum);

}

EXPLORING FUNTION ARGUMENTS:2M,EXAMPLE FOR EACH:3M

